Graphene analogue BCN: Femtosecond nonlinear optical susceptibility and hot carrier dynamics
نویسندگان
چکیده
منابع مشابه
Energy flows in graphene: hot carrier dynamics and cooling.
Long lifetimes of hot carriers can lead to qualitatively new types of responses in materials. The magnitude and time scales for these responses reflect the mechanisms governing energy flows. We examine the microscopics of two processes which are key for energy transport, focusing on the unusual behavior arising due to graphene's unique combination of material properties. One is hot carrier gene...
متن کاملHot carrier diffusion in graphene
We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene-oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal dynamics of hot carriers after a pointlike excitation are monitored. Carrier-diffusion coefficients of 11 000 and 5500 cm2 s−1 are measured in epitaxial gr...
متن کاملFemtosecond Carrier Dynamics in In2O3Nanocrystals
We have studied carrier dynamics in In(2)O(3) nanocrystals grown on a quartz substrate using chemical vapor deposition. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photo-generated carriers in In(2)O(3) nanocrystals. Intensity measurements reveal that Auger recombination plays a crucial role in the carrier dynamics for the carrier d...
متن کاملUltrafast relaxation dynamics of hot optical phonons in graphene
Using ultrafast optical pump-probe spectroscopy, we study the relaxation dynamics of hot optical phonons in few-layer and multilayer graphene films grown by epitaxy on silicon carbide substrates and by chemical vapor deposition on nickel substrates. In the first few hundred femtoseconds after photoexcitation, the hot carriers lose most of their energy to the generation of hot optical phonons wh...
متن کاملHot carrier-assisted intrinsic photoresponse in graphene.
We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Physics Letters
سال: 2010
ISSN: 0009-2614
DOI: 10.1016/j.cplett.2010.09.030